Back to Top ^

The Miracle of Digital Imaging

At about five o’clock one morning this past October, the retired physicist Willard S. Boyle received a scientist’s ultimate wake-up call. At first he couldn’t bestir himself—who could be calling at this ungodly hour?—but the phone was insistent, so his wife dragged herself out of bed.

A couple of minutes later, she was shaking him awake. “Stockholm is calling.”

Somebody’s kidding, Boyle thought. But he went to the phone. “There was this woman with a magnificent Swedish accent,” he recalled in a recent telephone interview with the Web site. “And I suddenly thought, well, nobody is going to have gone to all that trouble just to fool us at five o’clock in the morning!”

No, it wasn’t a joke. The dulcet voice from Stockholm announced that the 2009 Nobel Prize in Physics would be shared by Willard S. Boyle and his former partner from Bell Labs, George E. Smith, for their invention of the charge-coupled device (CCD), and by Charles K. Kao for fiber-optic communications technology.

The Nobel Prize in Physics tends to be an esoteric matter for most people. Not only does it usually go to individuals unknown to the general public, but it recognizes accomplishments that only physicists can begin to comprehend—things like the discovery of “giant magnetoresistance” (2007) or “broken symmetry” (2008). Sometimes the prize is awarded for something that everyone has heard of but few people understand or use (the laser, 1964), or to a scientist everyone has heard of, but not for the thing for which he is best known (Albert Einstein for the photoelectric effect, 1921).

In 2009, however, it went to three men for achievements that have, without the slightest exaggeration, touched and changed the lives of everyone living in the modern world. You’re benefiting from Kao’s work every time you use the Internet, make a phone call, or watch cable TV, and, more likely than not, you’re actually carrying Boyle and Smith’s work in your pocket—at least if you’ve got a digital camera, video camcorder, or camera-equipped cell phone.

The heart of all those devices is the CCD, a stamp-sized square of silicon that captures light and, by turning it into data, makes possible all the miracles of digital imaging. Even if you don’t own any CCD-equipped devices, you encounter them every day in barcode readers at the store, in photocopiers and fax machines, and even in the security cameras that are a ubiquitous part of 21st-century American existence. And if you’ve ever admired the profound beauty of an image from the Hubble Space Telescope, or for that matter almost any astronomical picture produced by a ground or space-based telescope in the past several decades, your awe springs from Boyle and Smith’s CCD.

This invention, which has so completely revolutionized photography, videography, and all forms of image creation, was created four decades ago for an entirely different purpose. Then as now, improving and enhancing the storage and manipulation of digital data in computers and other devices was a perennial quest, and Boyle and Smith were pursuing new approaches, at perhaps the best place in the world to do so.

From the day it was founded in 1925, Bell Laboratories has been at the vanguard of cutting-edge research and innovation in the fields of electronics and communications. It was here that Karl Jansky discovered radio waves from outer space in 1932; that John Bardeen, Walter Brattain, and William Shockley created the transistor in 1947; that the laser was first conceived in 1957; and that Arno Penzias and Robert Wilson serendipitously uncovered the microwave echoes of the big bang in 1965. “The atmosphere set up by the management was very conducive to people being creative,” remembers Boyle: a high-powered, competitive, yet freewheeling environment where no idea was too wild to be considered and no gadget was too bizarre to be built.

One autumn afternoon in 1969 at Bell’s headquarters in Murray Hill, New Jersey, physicist George E. Smith strolled into the office of his colleague, Boyle. These two experts in semiconductor physics had been working on a new technology involving metal-oxide semiconductors, but their boss, Jack Morton, head of advanced research at Bell, was pointedly challenging them to come up with something to compete with the other electronics research departments, where a concept called magnetic bubble memory was all the rage. Could the semiconductor boys somehow make that work? Or come up with some other even better idea? If not, Morton warned, he was going to have to cut the money for their projects and give it to the magnetic bubble guys.

So after Smith, who was a department head, had dealt with a few minor administrative matters with Boyle, executive director of the semiconductor device development division, they began brainstorming. “Let’s invent something,” Smith suggested. After spending some time scribbling equations and diagrams and schematics on Boyle’s blackboard, the two came up with one of those concepts that seemed so simple in retrospect that many later wondered why they hadn’t thought of it first: storing and moving electrical charges around on a silicon chip.